Stochastic Opponent Modeling Agents: A Case Study with Hezbollah
نویسندگان
چکیده
Stochastic Opponent Modeling Agents (SOMA) have been proposed as a paradigm for reasoning about cultural groups, terror groups, and other socioeconomic-political-military organizations worldwide. In this paper, we describe a case study that shows how SOMA was used to model the behavior of the terrorist organization, Hezbollah. Our team, consisting of a mix of computer scientists, policy experts, and political scientists, were able to understand new facts about Hezbollah of which even seasoned Hezbollah experts may not have been aware. This paper briefly overviews SOMA rules, explains how more than 14,000 SOMA rules for Hezbollah were automatically derived, and then describes a few key findings about Hezbollah, enabled by this framework.
منابع مشابه
Stochastic Opponent Modeling Agents: A Case Study with Hamas
Stochastic Opponent Modeling Agents (SOMA) have been proposed as a paradigm for reasoning about cultural groups, terror groups, and other socio-economic-political-military organizations worldwide. In this paper, we describe a case study that shows how SOMA was used to model the behavior of the terrorist organization, Hamas. Our team, consisting of a mix of computer scientists, policy experts, a...
متن کاملOn the usefulness of opponent modeling: the Kuhn Poker case study
The application of reinforcement learning algorithms to Partially Observable Stochastic Games (POSG) is challenging since each agent does not have access to the whole state information and, in case of concurrent learners, the environment has non-stationary dynamics. These problems could be partially overcome if the policies followed by the other agents were known, and, for this reason, many app...
متن کاملOn the Usefulness of Opponent Modeling: the Kuhn Poker case study (Short Paper)
The application of reinforcement learning algorithms to Partially Observable Stochastic Games (POSG) is challenging since each agent does not have access to the whole state information and, in case of concurrent learners, the environment has non-stationary dynamics. These problems could be partially overcome if the policies followed by the other agents were known, and, for this reason, many app...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملStochastic Facility Layout Planning Problem: A Metaheuristic and Case Study
Facility layout is one of the most important Operations Management problems due to its direct impact on the financial performance of both private and public firms. Facility layout problem (FLP) with stochastic parameters, unequal area facilities, and grid system modeling is named GSUA-STFLP. This problem has not been worked in the literature so that to solve GSUA-STFLP is our main contribution....
متن کامل